# Truss Systems (Linear Approximation) 

## Force-Balance Matrix and Mechanisms

For each truss system below,
(a) Calculate the force-balance matrix $B$,
(b) Determine the number of independent mechanisms,
(c) Identify the mechanisms corresponding to each nullspace vector of $B^{\mathrm{T}}$,
(d) Give at least two force vectors which will be balanced by internal tension/compression (no collapse).
(e) Write the force vector $f_{1}^{x}=f_{1}^{y}=0, f_{2}^{x}=f_{2}^{y}=1$ as a balanced force plus a force causing motion $\mathbf{f}=\mathbf{f}_{\mathbf{b}}+\mathbf{f}_{\mathbf{m}}$.

(I)

(II)

(III)

(IV)

(V)

## IDENTIFY THE MECHANISMS.

Several possible mechanisms (red bars) of the truss system on the left are given.
(a) Determine the transposed force-balance matrix $B^{T}$ for the systems on the far left.
(b) Identify (approximately) a motion vector $\mathbf{f}_{\mathbf{m}}$ indicated by the change of nodes from grey to red position.
(c) Check whether the motion vectors from (b) satisfy $B^{T} \mathbf{f}_{\mathbf{m}}=0$. Is $\mathbf{f}_{\mathbf{m}}$ a mechanism?
(I)


(II)



## Row Space, Column Space, Nullspace

For the matrices below give bases for the (a) row space, (b) column space, and (c) nullspace.
(I) $\left[\begin{array}{llll}1 & 2 & 1 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$
(II) $\left[\begin{array}{rrrr}1 & 2 & 1 & 2 \\ 2 & 4 & 3 & 7 \\ -1 & -2 & -3 & -8\end{array}\right]$
(III) $\left[\begin{array}{lllll}1 & 2 & 1 & 2 & 1 \\ 0 & 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$
(IV) $\left[\begin{array}{rrrrr}1 & 2 & 1 & 2 & 1 \\ 2 & 4 & 3 & 7 & 3 \\ -1 & -2 & -3 & -8 & -2\end{array}\right]$
(V) $\left[\begin{array}{llll}0 & 1 & 3 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
(VI) $\left[\begin{array}{rrrr}1 & 2 & 1 & 2 \\ -2 & -4 & -1 & -1 \\ -3 & -6 & -1 & 0 \\ 2 & 4 & 3 & 7\end{array}\right]$
(VII) $\left[\begin{array}{lllll}0 & 1 & 3 & 2 & 1 \\ 0 & 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(VIII) $\left[\begin{array}{rrrrr}1 & 2 & 1 & 2 & 1 \\ -2 & -4 & -1 & -1 & -1 \\ 1 & 2 & -1 & -4 & 1 \\ 2 & 4 & 1 & 1 & -1\end{array}\right]$

## MatLab

- Use the command null (<matrix>) to compute nullspaces with MatLab. The default output of null is an orthogonal basis for the nullspace - i.e. a minimal set of perpendicular vectors with length 1 that span the nullspace. Including the switch ' $r$ ' will give instead integer vectors (when possible) calculated using the LU decomposition. For example you could compute the nullspace of the matrix $A=\left[\begin{array}{rrrr}1 & 2 & 3 & -1 \\ 0 & 0 & 1 & 2\end{array}\right]$ as follows.

```
>> A = [lllllllllll}
>> null(A) % orthogonal nullspace 4 >> null(A, 'r') % integer nullspace
ans =
```



```
    ans =
        -2 7
        1 0
        0 -2
        -0.1390 0.2196 0
3 >> A * ans % check A* null = 0 % >> A * ans % check A*null = 0
ans =
    l.0e-14 * 
    ans =
        0
    0
```

- To compute the row space of a matrix you can use the MatLab commands ref (<matrix>) and rref (<matrix>). The command ref computes the "row echelon form" of a matrix; this is a fancy name for the matrix $U$ from the LU decomposition. Recall that the nonzero rows of $U$ are a basis for the rowspace.
The command rref computes the "reduced row echelon form" of the matrix; this is like $U$ but with extra row operations dividing rows so that pivots are 1 , and applying back substitution to remove elements above pivots.
For example you could compute the row space of the matrix $A=\left[\begin{array}{rrrr}4 & 2 & 6 & 2 \\ -2 & -1 & -1 & -3 \\ 2 & 1 & 5 & -1\end{array}\right]$ as follows.

```
>> A =[[ 4 2 6 2 ; -2 -1 -1 -3 ; 2 1 5 -1 ] ;
>> ref(A) % row echelon form % >> rref(A) % reduced row echelon form
ans = ans =
\begin{tabular}{rrrrrrrr}
4 & 2 & 6 & 2 & 1.0000 & 0.5000 & 0 & 2.0000 \\
0 & 0 & 2 & -2 & 0 & 0 & 1.0000 & -1.0000 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}
```

The nonzero rows in the results above are a basis for the rowspace.

- Since force-balance matrices for truss systems are mostly 0 , when entering them into MatLab it is easier to begin with a matrix of all 0 and then add the nonzero entries rather than typing in the entire matrix. To create a matrix of zeros, use the command zeros (<\#rows>, <\#cols>). For example you could enter the truss system to the right (4 moving nodes and 6 bars) as follows.

```
>> B = zeros (4*2, 6);
>> B(1:2,1) = [-1, 0];
>> B}(3:4,4)=[0, 1]
>> B}(5:6,6)=[0,1]
>> null(B')
ans =
\begin{tabular}{rr}
0.4472 & -0.2582 \\
-0.0000 & 0.0000 \\
0.4472 & -0.2582 \\
-0.0000 & 0.0000 \\
0.4472 & -0.2582 \\
-0.0000 & 0.0000 \\
-0.5854 & -0.2394 \\
-0.2394 & -0.8618
\end{tabular}
```

$\gg \mathrm{B}(1: 2,2)=[0,1] ; \quad \mathrm{B}(5: 6,2)=[0,-1]$;
$\gg \mathrm{B}(3: 4,3)=[\cos (\mathrm{pi} / 4), \sin (\mathrm{pi} / 4)]$;
$\gg \mathrm{B}(3: 4,5)=[-\cos (\mathrm{pi} / 6), \sin (\mathrm{pi} / 6)] ;$


Mechanism corresponding to the first nullspace vector

